
Upgrading Bitcoin:  
Segregated Witness

Dr. Johnson Lau
Bitcoin Core Contributor

Co-author of Segregated Witness BIPs 141-143
16-March-2016

Topics
• A short introduction to Bitcoin transactions
• What is transaction malleability and why it is bad
• Segregated witness as the solution
• Bonus of deploying segregated witness
• User experience
• Safety issues of deploying segregated witness

Bitcoin Transaction is like a cheque

From: Mining reward

Bitcoin Bank

To: Alice

Amount: 25BTC

Date: 14-03-2016

Signature:

Alice: 25 BTC

Bitcoin Transaction is like a cheque

From: Mining reward

Bitcoin Bank

To: Alice

Amount: 25BTC

Date: 14-03-2016

Signature:

Alice: 25 BTC

Alice: 0 BTC
Bob: 25 BTCFrom:

Bitcoin Bank

To: Bob

Amount: 25BTC

Date: 15-03-2016

Signature: Alice

Bitcoin Transaction is like a cheque

From: Mining reward

Bitcoin Bank

To: Alice

Amount: 25BTC

Date: 14-03-2016

Signature:

Alice: 25 BTC

Alice: 0 BTC
Bob: 25 BTCFrom:

Bitcoin Bank

To: Bob

Amount: 25BTC

Date: 15-03-2016

Signature: Alice

nLockTime

scriptSig

value

outpoint

scriptPubKey

Passing on

Alice: 0 BTC
Bob: 0 BTC
Carl: 24.99 BTC

Fee: 0.01 BTC

Alice: 0 BTC
Bob: 0 BTC
Carl: 0 BTC
David: 24.99 BTC

From:

Bitcoin Bank

To: David

Amount: 24.99BTC

Date: 13-03-2016

Signature: Carl

From:

Bitcoin Bank

To: Carl

Amount: 24.99BTC

Date: 18-03-2016

Signature: Bob

A chain of transactions
A later transaction is valid only if the
earlier transactions are valid and
confirmed

A chain of transactions

✓ A later transaction is valid only if the
earlier transactions are valid and
confirmed

A chain of transactions

✓
✓ A later transaction is valid only if the

earlier transactions are valid and
confirmed

A chain of transactions

✓
✓

✓ A later transaction is valid only if the
earlier transactions are valid and
confirmed

A chain of transactions

✓
✓

✓

✓ A later transaction is valid only if the
earlier transactions are valid and
confirmed

Bitcoin transactions are very flexible

From:

Bitcoin Bank

To: David

Amount: 25BTC

Date: 14-03-2016

Signature: Carl Edwin

From:

Bitcoin Bank

To: 2 of Carl, David, Edwin

Amount: 25BTC

Date: 17-03-2016

Signature: Bob

m-of-n multi-signature
e.g. 2-of-3 multi-sig

Bitcoin transactions are very flexible

From:

Bitcoin Bank

To: Anyone

Amount: 25BTC

Date: 17-03-2016

Signature: Bob

“Anyone-can-spend”

Payable to bearer cheque

Bitcoin transactions are very flexible

From:

Bitcoin Bank

To: Anyone

Amount: 25BTC

Date: 17-03-2016

Signature: Bob

“Anyone-can-spend”

Payable to bearer cheque

✓

Bitcoin transactions are very flexible

From:

Bitcoin Bank

To: Anyone

Amount: 25BTC

Date: 17-03-2016

Signature: Bob

“Anyone-can-spend”

Payable to bearer cheque

✓
✗ ✗

✗

Transaction malleability
• The transaction ID may be changed by the payer or any other people

before the transaction is confirmed by a miner
• The “appearance” of a cheque may be changed by the payer or any other

people before the cheque is confirmed by the Bitcoin Bank

• Malleability by the payer (Double spending)
• Malicious or legitimate
• NOT fixable. The payer will always have the ability to change the txid until the

tx is confirmed -> Unconfirmed tx is not safe unless you really trust the payer

• Malleability by any other people (Involuntary)
• Signature malleability
• Possible due to the mathematical property of the digital signature, and the

flexibility of Bitcoin script language

Signature malleability
All the following cheques are valid but not more than one might
be confirmed

Why transaction malleability is bad?
1. The Tx ID is not final until the transaction is confirmed
• Tx ID usually won’t change in traditional banking system
• MtGox blamed tx malleability for loss of 850,000BTC

2. A chain of unconfirmed transactions is not safe
• If the TxID of an earlier transaction in a chain is changed and confirmed, all

subsequent transactions in the chain become invalid

3. It is not possible to construct a chain of transactions, without first
signing an earlier transaction in the chain

• To buy an apartment, you have to irreversibly pay the deposit BEFORE you sign
ANY contract

• Even if you fully trust your counterparty, the problems 1 and 2 still
persist due to involuntary malleability.

Breaking unconfirmed tx chain with tx
malleability

✓

Breaking unconfirmed tx chain with tx
malleability

✓
✓

Breaking unconfirmed tx chain with tx
malleability

✓ ✗
✗

✗

✓

Creating a chain of transactions
Scenario: Alice is paying 25BTC to Bob, but only if Bob agrees to
pay 24.99BTC to Carl later.

Could she do it safely?

Creating a chain of transactions
Method 1

• Alice creates the green cheque
but not sign it

Creating a chain of transactions
Method 1

• Alice creates the green cheque
but not sign it
• Bob creates the yellow cheque

and signs it

Creating a chain of transactions

✗

✗

Method 1

• Alice creates the green cheque
but not sign it
• Bob creates the yellow cheque

and signs it

• Since the green cheque has no
signature and is invalid, the
yellow cheque is also invalid

Creating a chain of transactions
Method 2

• Alice creates the green cheque
but not sign it (invalid)

Creating a chain of transactions
Method 2

• Alice creates the green cheque
but not sign it (invalid)
• Bob creates the yellow cheque

and signs it (invalid)

Creating a chain of transactions
Method 2

• Alice creates the green cheque
but not sign it (invalid)
• Bob creates the yellow cheque

and signs it (invalid)
• Alice signs the green cheque

(valid)

✓

Creating a chain of transactions

✗

Method 2

• Alice creates the green cheque
but not sign it (invalid)
• Bob creates the yellow cheque

and signs it (invalid)
• Alice signs the green cheque

(valid)
• The yellow cheque is still

invalid since it is based on the
unsigned green cheque

✓

Creating a chain of transactions

Method 3

• Alice creates the green cheque
and sign it (valid)
• Bob may just take the money

and run away
✓

Solution to involuntary malleability :
Segregated witness
• Proposed by Pieter Wuille
• Transaction could be divided in the 2 parts:
• Base data: where the money comes and goes
• Witness data: information to verify the correctness of the base data

(signature)

• Segregated witness: separating base data and witness data

From:

Bitcoin Bank

To: Carl

Amount: 24.99BTC

Date: 18-03-2016

Signature: Bob

Base data

Witness data

New rules introduced by SegWit
• Instead of paying to “Alice”, we pay to “Anyone (segwit Alice)”
• When Alice wants to spend the money, she MUST NOT sign on the cheque.
• Instead, Alice signs on a separate paper and attach it to the cheque
• For people who enforce the new rules, they will verify the signature as they

know the money actually belongs to “segwit Alice”, not “Anyone”

• If the signature field on the cheque is not exactly blank, people who
enforce the new rules will reject the cheque
• Involuntary malleability becomes impossible

• For people who do not know the new rules…
• The cheque is valid because the money was sent to “Anyone” and did not require

any signature to spend
• They don’t understand “segwit Alice” and will just ignore it
• They will not see the real signature

Without segwit With segwit

Edwin

Fanny

Segregated witness
• Two types of malleability
• Signature malleability
• Double spending

• With segwit, signature malleability becomes irrelevant
• The cheque itself still looks the same (the TxID is not changed)

• Double spending becomes the only type of transaction
malleability
• Not fixable: unconfirmed txs are always unsafe
• Use multi-signature to prevent unexpected double spending by the

counterparty

• A transaction chain could be constructed without first signing
an earlier transaction in the chain

Signature malleability won’t break the tx
chain

Creating a chain of transactions with segwit

Scenario: Alice is paying 25BTC to Bob, but only if Bob agrees to
pay 24.99BTC to Carl later.
However, Alice worries that Bob will just take the money and
refuse to send to Carl
Use segwit and 2-of-2 multisig

Creating a chain of transactions with segwit
1. Alice has 25BTC in a segwit address, already

confirmed ✓

Creating a chain of transactions with segwit
1. Alice has 25BTC in a segwit address, already

confirmed

2. Alice creates the green cheque, sending
25BTC to “Segwit 2 of Alice and Bob”, but do
NOT attach a signature ✓

Creating a chain of transactions with segwit
1. Alice has 25BTC in a segwit address, already

confirmed

2. Alice creates the green cheque, sending
25BTC to “Segwit 2 of Alice and Bob”, but do
NOT attach a signature

3. Based on the green cheque, Alice and Bob
create the yellow cheque, sending 24.99BTC
to Carl, and sign it.

• The yellow cheque is invalid at this moment since
the green check has not signature attached

✓

Creating a chain of transactions with segwit
1. Alice has 25BTC in a segwit address, already

confirmed

2. Alice creates the green cheque, sending
25BTC to “Segwit 2 of Alice and Bob”, but do
NOT attach a signature

3. Based on the green cheque, Alice and Bob
create the yellow cheque, sending 24.99BTC
to Carl, and sign it.

• The yellow cheque is invalid at this moment since
the green check has not signature attached

4. After the yellow cheque has Bob’s signature
attached, Alice signs the green cheque

• Both green and yellow cheques become valid

✓
Alice

Creating a chain of transactions with segwit
1. Alice has 25BTC in a segwit address, already

confirmed

2. Alice creates the green cheque, sending
25BTC to “Segwit 2 of Alice and Bob”, but do
NOT attach a signature

3. Based on the green cheque, Alice and Bob
create the yellow cheque, sending 24.99BTC
to Carl, and sign it.

• The yellow cheque is invalid at this moment since
the green check has not signature attached

4. After the yellow cheque has Bob’s signature
attached, Alice signs the green cheque

• Both green and yellow cheques become valid

5. Bonus: If both Alice and Bob agree, they can
sign another cheque, dated before
18-03-2016, sending the money to another
person

✓
Alice

Bonus of segregated witness
• Increasing the maximum block size from 1MB to effectively

1.75-4MB
• Since the witness data is not visible to existing software, it won’t be

counted in the block size limit
• Allow more transactions in a block

• Existing transaction format still works in the same way as before
• Upgrade is mandatory for miners only
• Non-upgraded wallets will keep functioning (no malleability protection)
• Seamlessly sending money between upgraded and non-upgraded wallets
• Upgraded wallets will enjoy ~50% discount in transaction fee due to the

use of the cheaper space for witness data

Bonus of segregated witness
• Transmission and storage of witness data becomes optional
• Base data alone is enough for telling the full history of transactions
• Witness data is needed only if a wallet wants to validate transactions
• Most light wallets do not validate transactions
• Witness data long time ago may be removed, assuming no one would

challenge its validity
• Some archival network nodes may still keep witness data

Bonus of segregated witness
• Fully enabling smart contracts
• Many smart contracts require chains of multi-signature transactions
• Lightning Network: instant confirmation with very low cost

• Introduction of new script system becomes much easier
• BIP143: to be deployed with segregated witness (BIP141)
• Bug fix for transaction validation
• Fee calculation becomes much easier for hardware wallets / cold wallets
• Future
• Efficient signature system, e.g. Schnorr signature
• Compressing long and conditional scripts: Merklized abstract syntax tree (MAST)

Bonus of segregated witness
• Introduction of fraud proof system
• Bitcoin White Paper: “(SPV wallets) accept alerts from network nodes

when they detect an invalid block, prompting the user's software to
download the full block and alerted transactions to confirm the
inconsistency”
• Compact fraud proof is currently not possible in some situations
• Excessive minting
• Excessive block size
• Spending of a non-existing input
• Extra witness data can be committed that allows short proofs of block

invalidity that light wallets can quickly verify

User experience
• If you do not upgrade your wallet:
• You can receive payment from any wallets, upgraded or not, through 1-

initial or 3-initial addresses (without any benefit of segwit)
• You can pay a non-upgraded wallet, through an 1-initial or 3-initial

address (without any benefit of segwit)
• You can pay an upgraded wallet, through a 3-initial address
• You won’t enjoy any benefit of segwit
• The payee will enjoy the benefit of segwit when they spend the bitcoin later

• If you upgrade your wallet:
• You can receive payment from any wallets, upgraded or not, through 3-

initial addresses
• ~50% transaction fee discount (relative to non-upgraded wallet) is

expected when you spend your bitcoin, depending on the proportion of
witness data
• Multisig tx will enjoy more discount
• Tx with many inputs but a few outputs will enjoy more discount

Safety issues in the deployment of SegWit
• It is a softfork:
• Upgrade is mandatory for miners (mining pools) only
• As long as vast majority of miners enforce the new rules, sustained

blockchain split is not possible
• We have profound experience of deploying softfork: BIPs16, 34, 66, 65
• This is not the first time we change the meaning of some anyone-can-

spend scripts (BIP16)

• Testing and peer reviewing
• Segwit has been tested in sidechains for > 6 months
• Bitcoin segregated witness testnet (“segnet”) has been running since

December 2015

Technical details: BIP141
• A traditional 1-initial address represents a scriptPubKey like this:
• OP_DUP OP_HASH160 <20-byte-public-key-hash> OP_EQUALVERIFY OP_CHECKSIG

• With the same public key hash, the equivalent segwit scriptPubKey is:
• OP_0 <20-byte-public-key-hash>
• “P2WPKH”: Pay-to-witness-public-key-hash
• In the original script language, this scriptPubKey is anyone-can-spend, since it

does not contain any functional code, and the last push is non-zero

• To spend P2WPKH:
• The scriptSig must be exactly empty
• The witness must contain exactly 2 items: signature and public key

• We also define P2WSH (Pay-to-witness-script-hash) which allows
arbitrarily complex scripts, similar to P2SH (pay-to-script-hash, BIP16)
• See BIP141 for details

Technical details: BIP141
• Commitment of witness data
• Witness data is committed as a Merkel Root in one of the outputs of the

coinbase transaction.
• The commitment is recorded in a scriptPubKey of the coinbase transaction. It

must be at least 38 bytes, with the first 6-byte of 0x6a24aa21a9ed, followed
by the 32-byte commitment hash
• If there are more than one scriptPubKey matching the pattern, the one with

highest output index is assumed to be the commitment.
• Extra space is reserved for commitments required by future softforks.

• Witness data discount
• A 75% discount is given to the witness data
• Block size limit: base data size + (witness data size / 4) ≤ 1MB

Technical details: BIP143
• There are at least 2 weaknesses in the original signature verification

algorithm:

• The verification time grows quadratically, instead of linearly, as the number of
signature operations increase.
• A normal 1 MB block should take 2 seconds to verify
• A 1MB transaction with 5569 signature operations may take 25 seconds to verify; a 2MB

transaction may take > 10 minutes

• The algorithm does not involve the amount of Bitcoin being spent by the input.
• Offline transaction signing device ("cold wallet") are unable to calculate the exact

amount being spent and the transaction fee
• A cold wallet must acquire the full transaction being spent, just for calculation of fee
• Difficult for lightweight, air-gapped wallet.

• BIP143 introduces a new signature verification algorithm to segwit transactions
to solve these problems

Technical details: BIP144
• A new serialization format is defined
• Non-segwit transaction must use the original serialization format
• Segwit transaction use the new format when witness data is included

inputs

0x00

nLockTimeTransaction ID: nVersion outputs

nVersion inputs nLockTimeoutputsflags witnessWitness ID:

Technical details: BIP142 (deferred)
• There are 2 ways for using segwit:
• Native segwit (more efficient)
• Segwit in P2SH (less efficient as it requires extra base data space)

• BIP142 defines new address format for native segwit use
• Not deployed in the initial release for segwit

• “Segwit in P2SH” allows non-upgraded wallets pay to upgraded
wallets through 3-initial addresses
• Native segwit is still possible without BIP142
• BIP70 Payment Protocol
• Raw transactions (dangerous!!!)

BIP62: an incomplete fix
• “Dealing with malleability” by Pieter Wuille
• Canonical signature approach: Limiting the way people may

sign a transaction
• For involuntary signature malleability only
• Voluntary signature malleability / double-spending is not fixable

• It is an incomplete fix, because
• New mathematical malleability might be found in the future and bring

us back to the square one
• It fixes malleability in only some common cases
• In the case of an m-of-n multisig, ANY 1 of the n people may change the

Tx ID without the consent of other people (due to voluntary signature
malleability)
• It is still not possible to construct a chain of txs, without first signing an

earlier tx in the chain

